AUTOMATIC

DIFFERENTIATION

-0
’Z/ IN PROSE

F. W. Pfeiffer
‘Memorex Corporation
Santa Clara, California

INTRODUCTION

Much of the popular numerical software tor solving nonlinear
equations and nonlinear optimization problems require arrays
of partial dorivatives. Computing these derivatives
efficiently and accurately has been an obstaclte since the
time of Newton. A Littlte-known approach to computing
derivatives, however, has made this obstacle disappear for
users of one programming language. This short article
presents an overview of the approach and its implementation
in the lLanguage.

AUTOMATIC DIFFERENTIATION

Automatic Differentiation (AD) is a relatively new approach
to computing derivatives of known continuous functions
numerically. It is efficient, and it is exact to machine
acgouracy. The approach can be used to compute derivatives
of any order, and it cen be applied to functions of real,
complex, and interval variables. White the approach has
remained unknown to most of those in the numerical
community, it has actually been in use by a small number of
developers and users since the 1960s.

The main idea that ted to AD was that the formulas for the
derivatives of elementary functions could be preprogrammed
in a programming languages mathematical functions library —--
right atlong with the formulas that evaluated the function
1111. Then when a particular function was evaluated in some
computer program, several numerical values could be returned
to the calling program. The number returned in this type of
implementation would depend on the highest order derivative
formula preprogrammed.

In addition, the four elementary arithmetic operations
(+,~,%,/) on variables and functions, and the derivatives of
these operations on variables and functions, were
preprogrammed in the library as well. In other words, the
following three operations might have (optionally) been
per formed in SUBROUTINE ADD.

U + Vv . (zeroth-order arithmetic)

U + v’ (first—-order arithmetic)

U’ + V° {(second-order arithmetic)
In the early years of AD, code for the four elementary
arithmetic operations (+,-,%,/) was moved into the

subroutines where the code for elementary derivative

operations was located. Sometime in the future, however,
the elementary derivative operations will be moved into
hardware where the olementary arithmetic operations are

performed. In either case, the numerical algorithms for the
elementary arithmetic operations in AD are considerably
different. This is a new kind of scientific or extended

computer arithmetic which some implementors are now trying
to put into firmware 141, 1101 and eventually into hardware.

One of the chief advantages of AD over symbolic
differentiation (the generation of intine derivative
formutas) is that it is space efficient. Symbolic
differentiation in the usual manner generates formulas at an
explosive rate. AD does not generate formulas at an
explosive rate because it requires only one copy of each
etementary derivative formula. Tweniy years ago, this gave
AD a very important advantage over symbolic differentiation.
Nowadays, however, this advantage does not seem quite as
important. Another advantage of this newer approach -- an
advantage which shouid turn out to be far more important --
is that it allows the independent variables of
differentiation to change dynamically as many times as
required during execution. This capability is needed when
nesting numerical methods.

The basic ideas wunderlying AD are relatively useless,
however, unless they are automated in computer sofiware, and
quite naturally, the real burden of AD falls upon the system
software, i.e., the compilers, interpreters, linkers, and
loaders ~- not the user. The compiler for a lLanguage having
AD imbedded in it, for example, must not only generate
instructions to compute user’s functions, but it must also
generate instructions to compute derivatives of these
functions. The generation of these machine instructions and

their execution can ocour in a variety of ways. Some of
what has been published on these differentiating compilers
can be found by referring to 13, 15}, 161, 171, and 194.

Only five reforences are lListed here; the reader will find
pointers 1o others in these.

PROSE

PROSE is usually referred to as a celculus-level programming
Language. The language was developed in the early 1970s by
J. M. Thames and M. N. Rebinson while at PROSE Inc. in Los
Angetes, Catifornia. Their objective was to develop a
gensral-purpose programming language that would better
satisfy the numerical needs of computer users in the
engineering and scientific communities. Their desire to
create a new lLanguage for scientific computing was inspired
by the obvious mathematical deficiencies of Llanguages like
BASIC and FORTRAN. ' These two men reasoned that a new
Language which had easy-to~use, language-supplied features
for the numerical solution of major classes of problems
encountered often in engineering and science would be far
more useful than the tanguages then in use. Some of the
major classes of interest to them were:

Differentiation

Integration (Quadrature)
Algebraic Equations

Ordinary Differential Equations
Partial Differential Equations
Optimization

X E X ¥ ¥ X

Thames and Robinson had worked together on the automation of
mathematical software while at TRW, Inc. in Redondo Beach,
Catifornia during the late 1980s. Somewhere along the way,

they discovered that the automation of this software
required the automation of derivative evaluetion. They were
driven to AD by the very real need io make algorithms for
simulation, optimization, and parameter estimaetion work
efficiently together in single Large systems. So with the
techniques of AD mastered after years of hard work in this
area, these two software developers had Little difficulty,
evidently, in automating the mathematical software of their
choice in PROSE years later. By 1976, they had automated
software in all of the classes above, except PDEs, and then
had to stop due to a lack of financial support.

AUTOMATIC DIFFERENTIATION IN PROSE

Nothing has been published on the details of automatic
differentiation in PROSE, but a small number of facts are
known to a handful of users. Among these are that PROSE
makes use of preprogrammed formulas for f{irst and second
derivatives for its operators and library; al though ioday,
Thames and Robinson evidently prefer 8 recurrence formula

approaoch which allows for higher order derivalives. Also,
PROSE computes derivatives interpretively. (PROSE functions
tike an interpreter during execution.) This may seem

inefticient, but this approach atlows PROSE to change
independent variables dynamically during execution, and this
in turn allows PROSE users to nest numerical methods. This
capability to nest methods efficiently is usually well worth
the penalty of high-tevel interpretation.

PROSE can perform AD in two different ways. The first way
is simply at the user’s request. The user simply makes use
of statements for computing and assigning derivatives. In
this way, the user is free to print, plot, or wuse the
derivatlive values in formulas or other algorithms. The
second way is a result of wusing a numerical method in the
PROSE tibrary which requires derivatives. The use of these
numerical methods is accomplished through the use of other
statements in the "tanguage ~- described in 121.

DERIVATIVES BY REQUEST

One c¢an get derivatives of real and complex variables
computed and stored by using statemenis Like one of the
following.

EXECUTE .EQUATIONS WITH GRADIENTS ON U, V, W
EXECUTE .OBJECTIVE WITH HESSIANS ON X, Y, Z, T

First derivatives (GRADIENTS) of every variable in the block
named .EQUATIONS that is a function of U, V, and W will be
compuied and stored. In a similar manner, first and second
derivatives (HESSIANS) of every variable in block .OBJECTIVE
that is a function of X, Y, 2, and T will be computed and
stored. These derivatives will be evaluated at the current
value of the independent variables. Occasional checks over
the years have shown these derivative values to agree with
values from symbolic derivatives to at least 14 digits on
CDC and IBM computers.

Derivative vatues are assigned to variables in PROSE when
one of three, built-in functions is executed. Four examples
of these three functions are shown here:

E = .PARTIALC U, X) du/ax

2
F = .PARTIALC U, X, Y) a“u/axay

G = .GRAD(V) Vv
H

2
= .HESS(Y) Vv
The first two statements above are scalar assignment
statements. The variable E will be assigned the value of

the derivative of U with respect to X. Similarly, F will be
assigned the value of the second mixed derivative of U with
respect to X and Y. The Last two statements are a Littie
different, in that they ar2 both array assignment
slatements. PROSE knows that .GRAD(V) is a vector, and so
dynamically allocates the variable G as a vector witlh the
same dimensions and then makes the assignment. In a similar
manner, .HESSC V) is a matrix, and so H becomes & matrix
just before the assignment.

The Jacobian matrix of a real function cannol be obtained by
the user in the same way as the Hessian; insteed, a sequence
of gradients evaluations and array assignments must be made
to construct the Jacobian dynamicaltly, row by row. This is
not to say, however, that PROSE does not compute Jacobians.
PROSE will always compute the Jacobian automatically for any
numer ical method in its Library that requires it.

Let us now examine a very simple example of computing tirst
and second derivalives in PROSE. Suppose that we wanted to
compute the gradient vector and the Hessian mairix of the
real scalar function

F = SINHC X) % COSHC Y) + COSH(X) » SINH(Y)

at X = 1 and Y = 2, The following program would do just
this.
PROBLEM .DIFFERENTIATION
X = 1
Y = 2

EXECUTE .EQUATIONS WITH HESSIANS ON X, Y
VECTOR PRINT G
MATRIX PRINT H

END

MODEL .EQUATIONS

F = .SINH(X> % .COSH(Y) + ,.COSH(X)> % .SINH(Y)
G = .GRAD(F)
H = .HESS(F)
END
In all PROSE programs, execution begins with the first
executable statement in the PROBLEM block, i.e., the
statement “X = 1" in this case. Execution of the EXECUTE

statement causes PROSE (o execute the block, MODEL
.EQUATIONS, with first and second derivative evaluation

turned on. As PROSE is computing F in .EQUATIONS, it will
also compute the six derivatives requested simulianeously
and store them. The necessary instructions to do this were

interteaved by the PROSE compiler earlier. (PROSE functions
Like a compiler during setup.) AD will be turned an only
during the execution of this block. Execution of the
assignment statements for G and H result in the dynamic
allocation of G as a 2 element vector containing the
gradient of F and H as a 2X2 matrix containing the Hessian
of F. Execution of this program then returns to the PROBLEM
block, where the preformatted output statements VECTOR PRINT
and MATRIX PRINT print G and H.

DERIVATIVES AUTOMATICALLY

The example above illustirates how one could get first and
second derivatives if this is all one wanted. The reader
witt npow see that the job of computing derivatives s
performed avutomatically by PROSE whenever numerical methods
that require them are used. As a result, there may be no
visible evidence that derivatives are being computed in some
PROSE programs, while in fact, derivative evaluation may be
quite heavy.

Let us now Look at an exampte of PROSE computing derivatives
automatically. Suppose that we wanted to estimate the
parameters A and B {o fit the following ODE to some
measurements.

2

dy

——— = Ba¥x2 ¥ Y - 2 % A » B % EXP(-B *» T)
2

a7

For this probiem, we will use two numerical metlhods in
nested combination. The outer method will be wused to
minimize L(he absolute error between the measured and
computed vatues of Y. The inner method witl be wused to
solve the ODE IVP at the current values of A and B -- thus
giving us the computed value of Y at each measured value of
T. For this parameter estimation problem, the author wrote
the following program.

PROBLEM .DIFFERENTIATION.2
ALLOT TM(11), YM(11)
READ DATA
A =2 B =1 DT = 0.1
FIND A, B IN .DIFF.EQUATION
BY JOVE
TO MINIMIZE ERROR
END

MODEL .DIFF.EQUATION
T=20 Y =0 YDOT = 5 ERROR = 0
INITIATE ISIS FOR .EQUATION
EQUATIONS Y2DOT/YDOT, YDOT/Y OF T STEP DT
FOR I = 1 TO 11 DO
UNTIL T GE TM(I) INTEGRATE .EQUATION
ERROR = ERROR + (YM(I) = Y)>%x%2
REPEAT
END

MODEL .EQUATION
Y2DOT = Bx#2 % Y - 2 % A % B % EXP(-B » T)
END

A short description of what happens during the execution of
this program will be given block by block. For additional
details, the reader is asked to consult 111 and 121).

PROBLEM .DIFFERENTIATION.2 -- Execution of this block begins
with the ALLOT statement. ALLOT dynamically altocates T™
and YM as 11-element vectors. The READ DATA statement reads
in the measured values of T and Y and stores them in TM and

YM. {(For details on this I/O operation, consult Chapter 8
in 111.) The next Line contains three statemenis which
provide initial guesses for A and B, and the nominat
stepsize to be used by the ODE solver. The FIND statement

partially defines the minimizalion problem to be solved.
This statement declares (1) that the wunknowns are A and B,
<2) that a SUMT/Newton solver name JOVE is to be used, and

(3) that the objective funciion to be minimized is ERROR.
Execulion of 1the FIND statement leads to the execution of
JOVE, and this in turn, leads to the iterative execution of
the next bloock.

MODEL .DIFF.EQUATION -- Execution of this block begins with
the resettiing of the initial conditions for Y and YDOT at T
= 0 at each iteration of the minimization method. This
block is calted 12t times by JOVE. The INITIATE statement
aotivates and initielizes the ODE solver named 1S1S, a
fourth-order Runge-Kutta-Gill method. The FOR-DO (oop, and
the statements therein, allow PROSE to ocalculate the
absolute error between the measured and computed values of Y
at each measured value of time TM(I) by solving to ODE 1VP
up to TM(I) and then stopping to add the square of the I-th
absolute error (o ERROR. Upon termination of this loop,
execution returns to the minimization solver with the value
of the objective function at the current values of A and B.
Also returned to the minimization solver will be the first
and second derivatives of ERROR with respect to A and B.

MODEL .EQUATION -- This block contains the definition of the
ODE in the initial value problem. The ODE solver (ISIS)
calls this block 401 times for each iteration the
minimization solver (JOVE).

Fitting this ODE to data using nested numerical methods is
made possible by PROSE‘’s ability to compute the derivatives
of ERROR in the minimizalion problem with respect to the
paramelers A and B in the ODE problem. One of the internal
design features that makes this possible is that the ODE
solver is written in the PROSE Llanguege, and any code
written in PROSE -- even PROSE’'s own numerical methods —-
can be differentiated using the tanguage’s own AD
capabilities. PROSE ‘s approach to computing derivatives in
this particular situation altows for the efficient nesting
of methods which require derivatives —— a situation in which
numerical and symbolic differentiation would very lLikely be
impractical as ways of evaluating derivatives efficientty.

CONCLUDING REMARXS

Some readers may find the implementation of automatic
differentiation in PROSE not quite as thorough as they might

like. The Iimplementation is Limited to first and second
derivatives (gradient, Jacobian, and Hessian), and se any
need for higher-order derivetives cannot be satisfied
direcily. This Limitlation to first and second derivatives
is a result of the designers’ main objective, i.e., the
automation of the popular mathematical software -- not
compuling arbitrary order derivatives. For arbitlrary order

derivatives, the implementation is not as thorough as it is
in Pascal-SC 161, 171, 18].

The author has used the PROSE implementation of automatic
differentiation on CDC, I1BM, and Univac computers since
1974. The availability of AD in this programming language,
even ihough Limited to first and second derivatives, has
virtually eliminated his need for numerical differentiation
and substantially reduced his need for symbolio
differentiation. It has been a great relief during these
last 12 years to have one of the major obstacles to the use
of many powerful and general numerical methods removed from
one’s own scientific programming activities.

REFERENCES

1. Control Data Corporation, PROSE Procedure Manual,
Pub. No. 84003000, 1977

2. Control Data Corporation, PROSE Calculus Operations
Manual, Pub. No. 84003200, 1977

3. HKedem, G. Automatic Differentiation of Computer
Programs, ACM TOMS, June 1980

4, HKrinsky, B. end Thames, J. M. The Structure
of Synthetic Calculus. In Proceedings of the
International Workshop on High-Level Language
Computer Architecture, Los Angeles, Calif. 1984

5. Rall, L. B. Automatio Differentiation: Techniques and
Applications. Lecture Notes in Computer Science,
vol. 120, Springer-Verlag, New York, 1981.

6. Rall, L. B. Differentiation and Generation of Taylor
Coefficients in Pascal-SC. 1In A New Approach to
Soientific Computation, U. W. Kulisch and W. L.
Miranker, Eds., Academic Press, New York, 1983

7. Rall, L. B. Differentiation in Pascal-SC: Type
Gradient, ACM TOMS, June 1984

8. Rall, L. B. Computational Implementation of the
Muttivariate Halley Method for Solving Nonlinear
Systems of Equations, ACM TOMS, March 188S

8. Speelpenning, B. Compiling Fast Partial Derivatives aof
Functions Given by Algorithms, Ph.D. dissertation,
University of Illinois, 1980

10. Thames, J. M.
The Evolution of Synthetic Calculus: A Mathematical
Technology for Advanced Architecture
Proceedings of the International Workshop on
High~Level Language Computer Architecture
Fort Lauderdale, Florida, 1982

11. Wengert, R. E. A Simple Automatic Derivative
Evatuation Program, Comm. ACM, August 1964
I

