SIAM Workshop on Automatic Differentiation: Theory, Implemenation, and Application

Synthetic Calculus -- A Paradigm of
Mathematical Program Synthesis

Joseph Thames, Digital Calculus Corporation

INTRODUCTION

For more than 30 years, scientific programming has
addressed applications at an algorithmic level of math-
ematical problem description, pre-reduced from the
user level of problem declaration to the level of numeri-
cal computation. Automatic differentiation has made
it possible to transcend this level to a higher order of
non-algorithmic programming, where the description is
a declarative model of the application problem to be
solved. The model description remains essentially al-
gebraic, but the numerical analysis is not explicitly
described. Thus the model is a pure application
description and the solution methods are modularized
tools, hidden and interchangeable.

This is a new paradigm of program synthesis, which we
call synthetic calculus. It has been the basis of several
modeling languages including the one shown here, an
extension of FORTRAN 77. This is the initial im-
plementation of our new product, which we call Power-
Calculus™. In it, the declarative description of the
application model is literally called a MODEL. The
core of PowerCalculus™ is the inclusion of automatic
differentiation and a family of numerical solution tech-
niques and coordinate transformations based on it, all
of which are hidden within the language. The solution
techniques are called solvers and are invoked via lan-
guage operators, such as the FIND statement, the
operator for solving inverse problems.

We will discuss two major levels of software synthesis
and demonstrate some example applications. First is
"basic synthesis”, the application of automatic dif-
ferentiation to re-engineer (remodel) existing source
code for optimization. Next is "advanced synthesis”,
the capability of general purpose non-algorithmic
programming that we call structured calculus. This
leverages the power of basic synthesis via nesting.

BASIC SYNTHESIS

Figure 1is a case study of re-engineering — asimulation
program for A.C. motor design that was reapplied as
an optimization program and fully tested in about an

GLOBAL ALL
PROBLEM ACMOTOR
DIMENSION CNS(7)

DYNAMIC BOTM,BND
CALL INPUT

. CALLDESIGN
PRINT »,"

INITIAL DESIGN

Q2 = SEPDIAM*PY89: Q3 =~ SEFDIAM*Pl/28

C1=Q1/((Q1-STASLOTW) + {STASLOTW*(.7-(,038* (STASLOTW/AIRGAP)))))
C2 =Q2/({Q2-ROTSLOTW) + (ROTSLOTW*(.7-(.036* (ROTSLOTW/AIRGAF)))))
CRNOL =F1*AIRGAP*C1+C2/(8.96*COILTRNS*Q3)

Q4 = (STATOROD-STABAKIR-STABAKIR-SEPDIAM-. 1)/2-01

Q5 = (SEPDIAM + Q4 + .1)*P/56-STATOOTW-.016 : A3=Q4*QS: 21 =7000°A3
Q6 =COLTRNS*2/Z1: Z3 =-2Z Z4 = 32 + Z3: Q7 = 1.26**23*162

Q8 =84/1.26%23; Z5 = STACIKLEN + STACILEN + PI*STATGROD/14

RDC = Z5*COILTRNS*28Q7/12000

V1 = (SEPDIAM-.06-ROTORID-ROTBAKIR-ROTBAKIR) /2

V2 = (SEPDIAM-.06-V1)*PI/69-ROTTOOTW: Ad =Vi*V2

R2 = (,0133/A4)*(STACKLEN/12000)*U1

RROT = (58*COILTANS)**2*R2/138: R4=RROT

G3 = 3.24(Q4/(3*Q6) + .03/(STASLOTW +Q5) + STASLOTO/STASLOTW)

G4 =3.29(V1/{3*V2) +.03/(ROTSLOTW +V2) + ROTSLOTO/ROTSLOTW)

GS = {1/C1 + 1/C2-1)**2* 26/AIRGAP

G8 = (G3+G5%Q1)/58 + (G4 + G8*Q2)/a8

XLEAK = XC*P*COILTRNS**2*(.05 +GB*STACKLEN) | Leakage reactance
CRSTAL ~ 118/(SQRT(((RDC + Rd)**2) + XLEAK**2)) | Stall current
CRFL= 115/(SQRT({(RDC + R4/SLIP)**2) + XLEAK**2)) | Full load current
STORQ =~ 1.5782*(CRSTAL*2)*R4 | Stall torque

RTORQ = 1,5792*(CRFL**2)*R4/SLIP | Running torque

P8 = RTORQ*(1-SLIP)*1.264044849: PG = (CRSTAL**2)*(RDC +R4)

P? = (CRFL**2)*R4/SUP

FLUX = (1.4*F1/(STATOOTW*STACKLEN)}/8450 | Flux density

B7 = (SQRT(CRFL**2 + CRNOL**2)*FLUX/CRNOL)/1.4: B2=.13*B7**1.9
B3 = (((STATOROD**2-SEFDIAM**2)*F/4)-56*A3) *0.28*STACKLEN
FELOSS =-B83*82 | lron losses

CULSTA = (BT*CRNOL)/FLUX)**2*RDC | Statar copper losses

EFF = 5*P3/(P7 + FELOSS/2 + CULSTA} | Efficiency - maximize this
RAC = 13225/FELOSS 1 A.C. resistance

XMAG = 118/CRNOL | Magnetizing reactance
CULROT = CRFL*CRFL*RROT/STASLOTW { Rotor copper losses
CNS(1) = STATOROD-.1-SEPDIAM 1 Stator O.D = Separation Diam +.1
CNS(2) = SEPDIAM-ROTORID +.1 { Separation Diam = Rotar LD -.1
CNS(3) = ((SEPDIAM*F1/68)-.035)-ROTTOOTW ! Rotor tocth geometry
CNS(4) = 5*(SEPDIAM-ROTORID)-.025-ROTBAKIR 1 Rotor back iron geametry
CNS(3) = STORQ-60 | Stall torque = 80

CNS(g) = 18-FLUX 1 Flux density LE 18
CNS(7) =.08-SUP 1 Slip LE § percent
END

Figure 1. A.C. Motor Design Optimization Model

hour. The original program had been used for trial &
error design calculations by a west coast manufacturer.
To synthesize this mature engineering model into a
design optimization program, all that was necessary
was to introduce a FIND statement defining a con-
. strained optimization problem with 12 unknown
parameters and 7 constraints. The solver involved in
this case is a nonlinear programming algorithm called
THOR. Figure 2 (part of the output) is a report
automatically generated by THOR, summarizing the
iterations. This shows the initial guesses of the
parameters and the final results.

~—THOR SUMMARY, INVOKED AT ACMOTOR{29] FOR MODEL DESIGN —

CONVERGENCE CONDITION AFTER 38 [TERATIONS
UNKNOWNS CONVERGED

OBJECTIVE CRITERION UNSATISFIED
ALL SPECIFIED CRITERIA SATISFIED
LOOP NUMBER [INTAL] as
UNKNOWNS
COILTRNS 2.900000E+01 3.214302E+01
4.000000E+00 8.010000E+00
STASLOTW @.000000E- 02 6.570807E- 02
ROTSLOTW 3.500000E- 02 3.500000E- 02
AIRGAP 8.000000E- 03 8.000000E- 03
STATOOTW 1.350000E- 01 1.887118E- O1
STABAKIR 1.5000006- 01 3.985060E- 01
ROTTOOTW 1.100000E- Ot 8.835508E- 02
ROTBAKIR 4.7OO00OE- 01 8.700004E- O1
STASLOTO 45000006~ 02 2.500000E- 02
ROTSLOTO 1.500000E- 02 0.000000E +00
sup 2,000000E- 02 5.000000E- 02
OBJECTIVE
EFF 4020854E-01 7.312523E- O1
INEQUALITY CONSTRAINTS
CNS (1) 1.010000E+00 0.00000CE+00
CNS (2 1.225000E+00 2.235000E+00
CNS (3 A7121326- 02 1.042510E- O1
CNS (4 G.750000E- 02 7.2498635 2
CNS (8 -7.555336E+00 G.415480E- 04
CNS (6 1.258833E+01 1.437190E+01
CNS (7) 2.000000E- 02 0.000000E+00
—END OF LOOP SUMMARY

Figure 2. A.C. Motor Output Report

This case study illustrates the economic benefits of
synthetic calculus for reapplying existing apphcatxon
software in a higher-productivity mode. The existing
engineering simulation model was used "as is". It was
automatically elevated to optimization by the hidden
differential arithmetic. There was no mathematical
analysis or algonthm design required. Because this was
a re-engineering of an existing program, no debugging
was necessary, and since the optimization tools are
interchangeable, different algorithms could be sub-
stituted to verify correctness.

As this example illustrates, the benefits of multiple-
parameter optimization in practical engineering cal-
culation can often be dramatic. Because of the large
number of parameters, something on the order of a
billion to a trillion cases would have been necessary to
achieve this result by parameterizing the original pro-
gram. The bottom line benefit is dramatically reduced

-2-

cost, higher engineering productivity, and immediate
results to meet tight schedules.

The next two examples illustrate another form of the
FIND statement for solving implicit equation systems
with a solver called AJAX. The first (Figure 3) is the
solution of seven simultaneous nonlinear equations
representing a classical chemical equilibrium problem.
The model equations simply define a vector of equality
constraints to be matched to zero. The icon symbolizes
this FIND..MATCH program structure to solve im-
plicit algebraic equations (LAE) as a primitive of pro-
gram synthesis. In Figure 4 we sce the characteristic
summary report generated by the FIND statement, .
listing the unknowns and constraints throughout the
iterative solution process.

PROBLEM REACT(10000,1000,1000)

DIMENSION X(7),F(7)

DATA X/.5,0.0,0.0,5,0.0,.5.2.0/

FIND X; IN MOLES(X,F); BY AJAX; TO MATCH F
END

MODEL
DIMENSION X(7),F(7)
F(1) =X(1)/2+X[2) + X@)2-XE)/X(T)
F(2) = X() +X(4) +2*X(@)-2/X(7)
F(3) =X{1) +X(2} + X@)-1/X(7)

F{4) =-28B37%X(1)-138009°X(2)-78213°X{3) + 18827*X(4) I1AE
* +BAITX(E) + 13482/X(7)-10850°X(E)/X(7)
F(5) =X(1) + X(2) +X(3) + X{6) + X(5)-1 v
F(B) =400°X{1)*X{4)*+3-1.783TE5*X{2) *X(5)
=X 2 505X (o Ieon

Figure 3. Chemical Equilibrium Problem

— AJAX SUMMARY, INVOKED AT REACT[4] FOR MODEL MOLES —

CONVERGENCE CONDITION AFTER 10 [TERATIONS

UNKNOWNS CONVERGED

CONSTRAINTS SATISFIED

ALL SPECIFIED CRITERIA SATISFIED
:] 10
3.228708E - 01
8.223844E - 03
4.601703E - 02
6.181717E- 01
3.716851E- 03
8.767134E - 01
2.977863E+00

3.228708E - 01
8.223544E - 63
4.601709E - 02
8.181717€ - 01
3.716851E - 03
S8.767154E - 01
2.977863E +00

1.818838E - 13
1.380105E - 11
1.418820E - 11

-n-n-n-n-n-n-ngxxxxxxx
33999355838338:

—END OF LOOP SUMMARY

Figure 4. Chemical Equilibrium Problem Output

The second IAE problem (Figure 5) is an admittance
circuit fitting problem involving an overdetermined
system of 21 equations in 3 unknowns. In this case the
FIND statement implements a Newton-Gauss method
minimizing the Euclidean norm of the constraint vector
R, relating the residuals between computed and
measured admittance. The output graph (Figure 6)

GRAPHICS BOTH

PROBLEM CIRCUIT (5000, 1000,1000)

COMMON/PARAMS/ELELS,CS

DIMENSION F(21),Y(21),R21),W(21),YCR21)

DATA Y/1.273,1.278,1.382,1.604,1.708,1.950,2.148,2.27,
2.503,2.883,3.305,4.005,5.077,8.069,14.84,39.47,
-15.08,-0.708,-7.388,-5.288,-3,907/

EL=1.1E-10: ELS=-1.1E-10 : CS = 1.1E-12

DO 101=1,21

F() =2850+50*

-

-~

@AXES(CIRFIT",F,Y,YC,W)
FIND EL,ELS,CS; IN FIT(F,Y.R,W,
@FINISH(CIRFIT",F,YC,W)

END

 BY AJAX; TO MATCH R

MODEL FIT(F.Y,A.W,YC)
COMMON/PARAMS/EL ELS,CS
DIMENSION F(%),Y(*),R{*),W("),YC(*)
DO t0{=121
YC{f) =1/ (W()*EL-1/(W() *CS-1/(N() *ELS)))
R() = 1/YCH-1/Y()
10 CONTINUE
END

IAE

V

Icon

Figure 5. Admittance Circuit Fitting Problem

AMITIONCE
4.9

e

W
=

msrinL

— AJAX SUMMARY, INVOKED AT CIRCUIT[13] FOR MODEL FIT -

CONVERGENCE CONDITION AFTER 8 ITERATIONS

LOOP NUMBER [INMAL) 7 8
UNKNOWNS

EL 1.100000E-10 1.497680E-10 1.497660E - 10

ELS -1.100000E - 10 -3.633787E-10 -3.683787E- 10

cs 1.100000E€ - 12 7.472066E-12 7.4T2068E - 12

Heil 2274698E+00 8.901396E-02 8.901359E - 02
—END OF LOOP SUMMARY

Figure 6. Admittance Circuit Fit

illustrates a benefit of using a- problem-equation ap-
proach to nonlinear curve fitting, as opposed to a
general polynomial approach. The equations, being
phenomenological, faithfully reproduce the problem
singularities, allowing accurate fitting. In the printed
output we see the familiar summary print but with the
Euclidean norm shown as the objective function.

ADVANCED SYNTHESIS

Advanced synthesis (structured calculus) involves the
nesting of the basic synthesis structures to address
complex inverse problems. It employs the simplicity of
hierarchic description for ease of comprehension and
the synergistic power of combined algorithms at the
same time. The three types of basic synthesis primitives
are used a program forming alphabet. These synthesis
elements are shown in Figure 7a in formal notation, in
characteristic program structure, and with an as-
sociated icon for representation in graphical user in-
terfaces. Figure 7b illustrates the constrained form of
these operations. The two lower primitives encompass
the general field of mathematical programming and the
general field of continuous systems simulation. As we
will show, synthetic calculus unifies these technologies
into a single paradigm. Advanced synthesis is mainly
concerned with nesting simulation problems within
mathematical programming problems .

Advanced synthesis is enabled by hidden transforma-
tions which propagate differentiation. This includes
automatic differentiation of integration algorithms and
differential coordinate transformations for nesting in-
verse problems. These transformations are invoked
automatically by the solvers at nesting interfaces.

(a) Synthesis Elements - Simultancous Equations Systems
STRUCTURE ICON

Ordinary Differential Equations:
Y =f(x), y0=C

jon:

Qx)=min, g(x)=0, hx)2=0
LP, NLP, IP, MIP

! (Mathematical Programming Domain)
! LODE - Limited ODEs: INTEGRATE-UPFER
i y'=f(x), asysh,y0=C
i (Coet Systems Simulation Domain)
Figure 7. Program Forming

Nested Program Structure
Figure 8 introduces a few examples to illustrate nesting

of the synthesis primitives to form composite program

structures, symbolized by combined icons.

Nested Element Composites
COMPOSITE PROBLEM STRUCTURE

Figure 8. Structured Element Combinations

Pilot Ejection as a Boundary-Value Problem - The first
example (Figure 9) illustrates the use of the IAE/ODE
structure to solve a boundary-value problem. This in-
volves the nesting of differential equations (the IN-
TEGRATE primitive) inside a system of implicit
equations (the FIND..MATCH primitive).

This is the well-known Pilot Ejection problem often
used to illustrate simulation languages, but in this case
it is solved in a loop using altitude as a parameter, and
the aircraft speed and seat trajectory time are solved as
unknowns by the FIND statement to match boundary
condition constraints GX and GY which specify mini-
mum clearance for safe ejection. The outer solver
invoked is AJAX.

The differential equations reside in the model MO-
TION. The initial value problem to solve these equa-
tions is defined and initialized by the INITIATE
statement. This statement connects the solver ISIS to
the equations, identifying the rates tobe integrated, the
states that are the output of integration, the inde-
pendent variable, the integration step size and the
upper limit of integration. The INTEGRATE state-

GLOBAL ALL
GRAPHICS FILE .
PROBLEM EJECT | Pilot Ejection Profile
DIMENSION ALT(6),VEL{6)
CHARACTER FCSINT*2,PLANE*?
DATA ALT/0,10000,20000,30000,40000,50000/
SMASS=7:G=322:CD=1:VE=40: THETAD =15 : TIME~1.0
G=10:Y1=4:VA=100
DO10I=1,9
H=ALT() : IT=0 : PLANE = ‘PLANE//FCSINT()
@AXES(PLANE, PILOT EJECTION)
IF(H.LE.35332) THEN
RHO =0.0023784{1-.685E-5%H)**4.258
ELSE

RHO =0.00315/EXP(1.452 + (H-38332)/20850)

ENDIF

FIND VA,TIME; IN SEAT(PLANE); BY AJAX(ACON); TO MATCH GX,GY
@DISPLAY (PLANE) .

VEL() =VA

MODEL SEAT(PLANE)
CHARACTER®*2 FCSINT,N,PLANE*7
VX = SQRT(VA**2)-VE*SIND(THETAD) : VY = VE*COSD(THETAD)
V= SOATVX*WX + VY*VY) : THETA = ATAN(VYAX)
X=0:Y=Y1:T=0: DT=ABS(TIME)/20 : DP=4¢DT : TP=T+0P
IT=IT+1: Nl=FCSINT(T)
{F(T.GT.9) THEN
@POINT(PLANE, T/NIX,Y)
ELSE

@CURVE(PLANE, T/NLX,Y)
ENDIF

INITIATE ISIS; FOR MOTION; EGUATIONS
& THEDOT/THETA, VDOT/V, XDOT/X, YOOT/Y; OF T; STEP DT; TO TP
DO WHILE (T.LT.TIME)
INTEGRATE MOTION; BY ISIS

GX=-X-30 | Boundary condition on X at T=TIME
GY=Y-20 | condition on Y at T=TIME
TERMINATE MOTION

END

MODEL MOTION 1 Differential Equations

D=0.5°RHOCD*S*V*V IAE/ODE

Icon

Figure 9. Pilot Ejection Boundary-Value Problem

ment then generates the trajectory using the solver
ISIS. In this case the integration is piecemeal in order
to plot trajectories.

Figure 10a-b shows the iteration of trajectories for two
parameterized altitudes to converge on the point above
the rudder defined as minimum clearance for safe
ejection. The aircraft speed computed at each altitude
is the maximum speed that meets this criteria. Safe
speed increases with altitude, and fewer iterations are
required because the previous result is a good guess.

This process is a Newton iterated shooting method
where the numerical integration algorithm is being
differentiated as it is executed, producing partial
derivatives of boundary conditions with respect to ini-
tial conditions. This process is not possible with sym-
bolic differentiation methods because no formula of
the integral function exists. It exemplifies why auto-
matic differentiation is a programming breakthrough.

PILOT EJECTION
ALTITUDE 6.008 3.8
SPEED 237.949
2.0
(a)
18.8
-3‘.8 -2.9 ~-10.9
PILOT EJECTION
ALTITUDE $0000.000 I 1
SPEED §40.168
a8
19.9
-3.8 ~2.8 -18.6
ALTITUDE SAFE EJECTION PROFILE
S0000.0
48068 .0
SAFE UNSAFE
30860.0
(©
20606.9
18664 .8
N:] 688.8 e88.8
SPEED

Figure 10. Pilot Ejection lterations and Safe Profile

The final result (Figure 10c) is a plot of the safe ejection
profile, created in a single run. Using the old trial &
error simulation approach, this would have required 30
to 60 runs.

Implicit Differential Equations - The second example,
illustrates the ODE/IAE structure, used to solve a pair
of implicit differential equations. This involves nesting
implicit equations (the FIND..MATCH primitive) in-
side a differential equations model. In the program
(Figure 11), the integration model is identified in the

PROBLEM IMPDES
COMMON XDOT X,YDOT,Y,T
X=14000: Y = 7000 | Initial Canditions
XDOT =-50 : YDOT =-25 { Initial Rate Guessea

T=0:DT=25:TP=5

@AXES(PLOT)

INITIATE JANUS; FOR IDEQ; EQUATIONS
* XDOT/X, YDOT/Y; OF T; STEP DT; TO TF;

PRINT*' TIME XDOT X Yoot s
TF=TP .
DO WHILE (TF.LE.50)

INTEGRATE IDEQ; BY JANUS
PRINT *(8E15.6)', T XDOT X,YDOT,Y
@CURVES(FLOT)
TF=TF+TP
END DO
@SHOW(PLOT)
END

MODEL IDEQ
COMMON XDOT X,YDOT,
FIND XDOT,YDOT; IN IMTE(GX.GY). BY AJAX(ACON); TO MATCH GX,GY

END

| Implicit Differential Equations

MODEL IRATE(GX,GY)
COMMON XDOT X,YDOT,Y,T
GX = XDOT +3.2*SQRT(1-(XDOT + YDOT}*EXP(-T/50)
& *(1.15+57.5/(20000 + X +Y)))

& *(1+.1°EXP(T/10)*SIN(1.5708°T))

Y = YDOT +1.58*SQRT(1-(XDOT + YDOT)*EXP(-T/50)
: *(1.18 +38.2/(20000 +X +Y)))

END

| implicit Rate Equations

ODE/IAE
*(1+.1*DXP{T/0)*SIN(1.5708°T))

CONTROLLER ACON(AJAX)
SUMMARY =0

enD Icon

Figure 11. Implicit Differential Equations

INITIATE statement, as IDEQ. This model contains a
FIND statement which solves the model IRATE for the
implicit rate variables XDOT and YDOT to match the
equality constraints GX and GY to zero. Thus
Newton’s method is used during each integration step
to implicitly determine the rates used in the integration
algorithm.

IMPLICIT DIFFERENTIAL EQUATIONS

\/!{m:;""“.‘

ra —

Figure 12. Implicit Differential Equations Output

Multipoint Boundary Value Parameter Estimation - The
next example (Figure 13) illustrates the UPO/ODE
structure used to solve a multipoint boundary-value
problem determining the parameters, of a set of dif-
ferential equations. These equations govern the

. kinetics of a chemical reaction having four chemical

concentrations, A,B,C, and D. It is an inverse problem
to match experimental data for the concentrations A
and C over time, determining the parameters P1 and
P2 by least-squares curve fitting. The unconstrained
optimizer HERA is used to minimize the least-squares
error. This error is accumulated during the reaction
when data were observed. Figure 14 shows the concen-
tation curves for the initial and final iterations.

GLOBAL ALL

GRAPHICS FILE

PROBLEM CHEMPARE | Chemical Kinetics P: ter Estl
DIMENSION TM(6),CM(8),AM(8)
DATA TM/10,20,30,40,50,60/ | Time points for measurements
DATA CM/0.419,0.563,0.629,0.668,0.689,0.708/ | C measuremeants
DATA AM/0.483,0.281,0.181,0,134,0.097,0.088/ { A measurements

DATA NM,A0,80,C0,D00,07/8,1.0,1.03,0.0,0.02.0/ 1 Initial Conditions.
DATA Bt 8200180018 | Opﬂmlzltbn step bounds
P1=0.01: P2=0.08 1Py
INITIATE ATHENA; FOR REACTION;
& EQUATIONS DADT/A,DBDT/8,DCOT/C,DDDT/D;
& OFT;STEPDT;TOTF
FIND P1,P2; IN CURFIT;
& BY HERA(SET); WITH BOUNDS 81,82; TO MINIMIZE ERROR
END

MODEL CURFIT

CHARACTER*2 FCSINTNI

DATA IT/0/ : Ni=FCSINT(IT)

@AXES{ITER'//NL, TTERATION "//N))

AwAQ: B=B80; C=C0: D=D0: T=0: TF=0: ERROR=0: |=1
DO WHILE (L.LE.NM)

TE=TF+0OT

INTEGRATE REACTION; BY ATHENA

@CURVES(ITERY/)

F(TF.EQ.TM()) THEN
ERROR = ERROR + (AM(1)-A)**2 + (CM()-C)**2 1 Cumutative esror
l@QIAE:SURE)('ITERIINI.AM(I).QI(I),m(I)) | Plot measurement
=14
ENDIF
END DO
@SHOW(TTER//N)) 1 Show graph for this iteration
IT=lT4+1
END

DcoETL P1+A*B ! o '
DADT=-{DCDT + (01 +P2)*A UPO/ODE
DBDT =-{DCOT + 054B*0) -
DDOT =DAOT-DADT
END

CONTROLLER SET(HERA)
DELTA = 1E-2: DETAIL = 1: ADJUST =2
END

Icon

Figure 13. Chemical Parameter Estimation Problem

Figure 15 shows the final summary report of the itera-
tions produced by the FIND statement. This is fol-
lowed by a detailed iteration report. These detailed
reports show the Hessian matrix and the gradient vec-
tor at the current point. Next are the eigenvalues and
eigenvectors of the Hessian, and the computed step
along each eigenvector. In the first iteration both steps
were bounded, and the second was an anti-Newton
step. This detailed history of the iterations is often
useful in understanding pathological surfaces.

CHEMICAL PARAMETERS ESTIMATION
ITERATION 0

Pi= 0.009
P2= 0950

CHEMICAL PARAMETERS ESTIMATION

ITERATION 6
PL2 0073
o P2= 0003
8.3[
a.?
8.8
05
8.4
[I |
a.2
8.1 /—'— \\n

Figure 14. Initlal & Final Fit Iterations

— HERA SUMMARY, INVOKED AT CHEMPARE[12] FOR MODEL CURFIT —

CONVERGENCE CONDITION AFTER 6 [TERATIONS
UNKNOWNS CONVERGED
OBJECTIVE CRITERION UNSATISFIED
ALL SPECIFIED CRITERIA SATISFIED

LOOP NUMBERINITIAL] s 8
UNKNOWNS

P1 1.000000E - 02 7.227140E- 02 7.315935E- 02
P2 5.000000E - 02 3.450409E- 03 3.565576E- 03
CBRUECTIVE

ERROR 1.597781E+00 1.867020E- 04 1.275779E- 04
~—END OF LOOP SUMMARY

= == = SCROLLPAGE 1
— HERA TERATION 0 INVCKED AT CHEMPARE([12] FOR MODEL CURFIT —
OBJECTMVE [F] 1.887781E+00

INDEPENDENT VARIABLES [X] 1.000000E - 02 5.000000E - 02
HESSIAN MATRIX [D2F/DXDX] (N (2
(1 2.577044E+03 4,739828E +02

(2 4.739828E+02 - 1.003211E+01
GRADIENT VECTOR {DF/DX] - 8,620254E+01 8.241589E +00
EIGENVALUES OF HESSIAN MATRIX 5.986968E - 01 - 2.314423E - 02
MATRIX OF EIGENVECTORS (1 (2
(1) BB4TITCEOt -1741823E- 01
(2 1.741623E01 0.847170E - O1
DELTA-X [| = BOUNDED,| = ANTI-NEWTON]
0.173832E - 01| -0.121583E - 01
DELTA-X/X 1.738319E+00 - 2.431664E - 01
CONVERGENCE CONDITION AFTER 0 ITERATIONS
OBJECTIVE CRITERION UNSATISFIED
SPECIFIED CRITERIA UNSATISFIED

Figure 15. Summary & Detailed Reports

Optimal Design & Control - The next example (Figures
16 & 17) illustrates nesting of inverse problems
(UPE/TAE/ODE structure). Model TWOPT solves a
two-point boundary-value problem using the Newton
solver AJAX to find the initial condition of the control

. variable Y to match its boundary condition to zero.

Then it computes the objective function for the outer
optimization process to find the design parameter A
appearing in the objective function and in the ODEs.

GLOBAL ALL
PROBLEM CPTDES
FIND A; IN TWOPT; 8Y HERA;
~ TO MINIMIZE 0B84
END

MODEL TWOPT | Two point boundary value problem
YO0=.7 | Guess for Initlal candition
FIND Y0; IN TRAJ; BY AJAX; TO MATCH Y4
OBJ=2Z/2+A**2/2

END

MODELTRAJ | nitial value problem
Y=Y0:X=1:Z=0:T=0/1 Initial conditions
DT=025:TF=1
INITIATE IS1S; FOR DIFF;

~ EQUATIONS 2D0T/Z, XDOY/X, YDOT/Y;
~ OF T; STEP DT; TO TF
INTEGRATE DIFF; BY ISIS
Y1 =Y | Boundary condition
TERMINATE DIFF
END

MODEL DIFF
ZDOT = X**2 + Y**2 | Objective differential equation I
XDOT=-A%+Y | State differantial equation con
YDOT=X+A*Y |Control differential squation

END

UPO/IAE/ODE

Figure 16. Optimal Design & Control Problem

Upon convergence of the inner FIND statement (in
model TWOPT), differential coordinate transforma-
tion takes place to transform all the (first order) derivi-
tives with respect to Y0 into (first & second order)
derivatives with respect to the design parameter A.
This also differentiates YO with respect to A, making it
into a dependent variable.

Figure 17 illustrates the hierarchy of solvers and model
contexts in this program, designating the interface be-

OPTDES
{7100 A i vop1i| Differential Coordinate Transformation
10 WimuIZe 084 |

Figure 17. Optimal Design & Control Hierarchy

tween the two nested inverse problems where the coor-
dinate tranformation occurs. This transformation is an
essential part of the hierarchic programming ap-
paratus, since it enables the differentiation of implicit
functions, thereby eliminating the need for restructur-
ing the problem for solution purposes. It is invoked by
the inner inverseé solver (AJAX in this case) upon
detecting that an outer derivative context exists.

Figure 18 shows summary reports from AJAX, each
corresponding to an iteration of the optimizer HERA,
followed by a summary print from HERA.

—AJAX SUMMARY, INVOKED AT TWOPT[8] FOR MODEL TRAJECT —
CONVERGENCE CONDITION AFTER 1 [TERATIONS
UNKNOWNS CONVERGED
CONSTRAINTS SATISFIED
ALL SPECIFIED CRITERIA SATISFIED
LOOP NUMBER [INITIAL] 1

Yo 0.700000E +00 -0.761580E +00

Y1 0Q.225520E +01 -0.183684E-15
—END QOF LOOP SUMMARY

~AJAX SUMMARY, INVOKED AT TWOPT[8] FOR MODEL TRAJECT —
CONVERGENCE CONDITION AFTER 1 [TERATIONS
UNKNOWNS CONVERGED
CONSTRAINTS SATISFIED
ALL SPECIFIED CRITERIA SATISFIED
LOOP NUMBER [INITIAL] 1

UNKNOWNS
Yo 0.700000E +00 -0.842454E+00
CONSTRAINTS
Y1 0247563E+01 0.602491E-15
—END OF LOOP SUMMARY

—AJAX SUMMARY, INVOKED AT TWOPT{8] FOR MODEL TRAJECT —
CONVERGENCE CONDITION AFTER 1 {TERATIONS

UNKNOWNS CONVERGED
CONSTRAINTS SATISFIED
ALL SPECIFIED CRITERIA SATISFIED
LOOP NUMBER [INITIAL] 1
UNKNOWNS
Yo 0.700000E +0C -0.840282E + 00
Y1 0.248091E+01 -0.174685E-18
—END OF LOOP SUMMARY

—AJAX SUMMARY, INVOKED AT TWOFT[8] FOR MODEL TRAJECT —
CONVERGENCE CONDITION AFTER 1 [TERATIONS
UNKNOWNS CONVERGED

Y0 0.700000E +00 -0.840251E+00

Y1 0.248091E+01 -0.234730E-15
-~END OF LOOP SUMMARY

~HERA SUMMARY, INVOKED AT OPTDES([3] FOR MODEL TWOPT —
CONVERGENCE CONDITION AFTER 3 ITERATIONS

UNKNOWNS CONVERGED

OBJECTIVE CRITERION SATISFIED

ALL SPECIFIED CRITERIA SATISFIED

LOOP NUMBER [INITIAL] 1 2
UNKNOWNS

ALPHA 0.00000CE+00 0.228183E+00 0.2320900E+00
OBJECTIVE

oBJ 0.380810E+00 0.347270E+00 0.347285E+00
LOOP NUMBER {INITIAL] 3

UNINOWNS

ALPHA 0.000000E+00 0.232002E +00

OBJECTIVE

osJ 0.380310E+00 0.347265E+00
~—END OF LOOP SUMMARY

Figure 18. Optimal Design & Control Output

Wing Design Optimization - The final example (Figure
18) illustrates the CPO/IAE/ODE structure, using
constrained optimization to solve for 12 design
parameters subject to an equality constraint and an
inequality constraint. This program determines an op-

. timal wing design in the sense that under prescribed

total weight constraints, and upper and lower bounds
on flexural rigidity (EI) the values of EI for NEI wing
sections are determined, along with the length ALPHA
of each section, so as to maximize a normalized lift to
weight ratio. The wing is modeled as a non-uniform
cantilever beam. Its cross-section may be non-uniform
in material properties (characterized by elastic
modulus E) and/or in geometry (characterized by mo-
ment of inertia I). Because the aerodynamics are
coupled with the structure, it is necessary to know the
wing deflection to determine the lift, but the deflection
itself depends upon the lift. This is reflected in the
differential equation boundary-value problem used to
model the wing structure.

The nested boundary-value problem is solved by the
FIND statement in model FLEX, the equation in-
tegrated is asecond-order differential equation (state-
ment number 20 in BEAMODE). The INITIATE
statement in model BEAMIVP handles this as an
equivalent system of first order ODEs because of the
repeated occurance of the the state variable DYODX
as the rate variable of a second (hidden) ODE.

The solution of definite integrals via Simpsons rule
occurs in the WINGLIFT formula in model FLEX, and
in the differential equation formula in model
BEAMODE. The integrand in both cases is the func-
tion model FORCE, containing an IF statement to
switch between the lift integral and the moment in-
tegral formulas. IF statements also appear in the
Lagrange interpolation function model TERP, called
by FORCE. The appearance of IF statements in pro-
cedures undergoing differentiation (see also Figure 13)
is a novel capability of automatic differentiation. Since
differentiation is dynamic rather than static, thereis no
concern that the formula differentiated is changed
from instance to instance.

This example also illustrates several language features
that aid in simplifying programs. The GLOBAL ALL
declaration avoids the chore of declaring the scope of
the variables in each procedure. It causes all program
variables to be accumulated in a common block
/GLOBALS/. The DYNAMIC declaration defines
variables to be used as free storage arrays, which may
be ALLOTed and PURGEA at run time. Dynamic
arrays are objects containing rank and dimension in-
formation which may be accessed by the array opera-
tions of the language, such as the array assignment

GLOBAL ALL 1 Wing Design Optimization

PROBLEM WING {40000,5000,2000)
DYNAMIC X8,Y ALPHA ALPHAL ALPHAU,DELALPEIS,EILEIU, DELEI
@NODIAG(1006): CALL SETUP

HOLDING WEIGHT; MATCHING ALTOTL;
TO MAXIMIZE WINGLIFT | LV Weight
PRINT *,’ SOLUTION TO ODE-S'
TABULATE X8,Y
END

FIND EISALPHA; 1 Fl 1 rigidity vector, length fractk vector

~ IN FLEX; BY THOR(TCON);

~ WITH BOUNDS DELE},DELALP;

~ WITH LOWERS EILALPHAL; CPO/IAEIODE
~ WITH UPPERS EIUALPHAU; N

PROCEDURE SETUP
P1=3.1415926584: O=0: WL = 1: A=6: EPSIN=0.1: DY0=0.01: DYLDX=0:
H=0.05: NEl = §: WTMAX = 7: NPTS = (WL-O)/H + 1
ALLOT ALPHA(NE),ALPHAL(NEI) ALPHAU(NEI) ALPHAU(NET), DELALP(NE])
ALLOT EIS{NE]),EIL(NET),EIU(NET),DELEI(NE]): ALLOT XS(NPTS),Y(NPTS)
<ALPHA> = (0.2): <ALPHAL > =(0.1): < ALPHAU > =(1.0)
<DELALP > =(0.0333): < DELEI>=(0.333): <EIS> =DATA(8,5,4,3.2)
<ElL> =DATA{3,2,2.8,1,1): <EIU> =DATA(10,7,5,4,4)
DO 101=1,NPTS
XS{) =0+ (H)'H: Y{i) = EPSLN*SIN(PI*XS(1)/2)

MODEL FLEX
FIND DY0; IN BEAMIVP; ! Beam equation boundary value pr

~ BY AJAX(KNOB); TO MATCH YPA
EIAVG=0
DO 10 K=1,NEl

10 EIAVG =EIAVG +ALPHAJG*EIS(K) | Avg. flexural rigidity

LFLG = 1: WINGLIFT =$INTEGS!(FORCE,OQ,WL,1D-4)/EIAVG
LFLG=0: WEIGHT=WTMAX-EIAVG i Welght {inequality} constraint
ALTOTL = ARRAYSUM{ALFHA)-1 | Total Iongth (equality) constraint
ROWPRINT EIAVG,WINGLIFT,WEIGHT,AL’
TABULATE EIS ALPHA

END

MODEL BEAMIVP | Beamn equation Initial valus problem
X=0: YO=0: DYODX = DYQ: XF=H: Y(1)=Y0
INITIATE ATHENA(CNTRL); FOR BEAMODE; ! Integrate beam equation
~ EQUATIONS D2Y0DX2/DY0DX,DYODX/Y0; OF X; STEP H; TO XF
00 101=2,NPTS
INTEQRATE BEAMODE; 8Y ATHENA
Y()=Y0: XFuXF+H
10 CONTINUE
TERMINATE BEAMODE
YPA=DYQDX-DYLDX | Boundary constraint - must be zero
END

MODEL BEAMODE 1 Cantilever baam differential equation
SUM=0
DO 10 J=1,NE1
[FOCGE.SUM*WLANDLLT. (ALPHAY) + SUM)*WL) THEN
El=EISY): GOTO 20
ENDFF
SUM=SUM +ALPHA)
10 CONTINUE
20 DZYGDX2=-$INTEGS!{FORCE,O,X.4)/E1*(1 + DYODX+*2)**1.5
END

FMODEL FORCE(R) | Quadrature [ntegrand - lift or moment
IFLFLG.GT.0) THEN | Calculate [ift integrand
FORCE = A*COS(PI*R/(1.85*WL))-EPSIN*TERP(F)
ELSE 1 Calculate moment integrand
FORCE = R*(A*COS(P1*R/(1.85*WL))-EPSLN*TERP(R))

END

FMODEL TERP(@) | Lagrange Int
IF(ZEQXS(1)) THEN

of wing

P

ELSEIFZ.LTXS(2) THEN
argg-mvozsm.xsmxswﬁmx(z)x@)@

DO 10 I1=2,NPTS-1

TERP = POLY(XS(-1) XS XS(1 + 1LY {-1,Y(,Y(1 + 1).2)
Eried -

Figure 18. Wing Design Optimization Problem

~THOR SUMMARY, INVOKED AT WING[8] FOR MODEL FLEX —
CONVERGENCE CONDITION AFTER 3 [TERATIONS
UNKNOWNS CONVERGED
OBJECTIVE CRITERION SATISFIED
ALL SPECIFIED CRITERIA SATISFIED

LOOP NUMBER ..__[INITIAL] 1 2
UNKNOWNS
as
as

{ 1) ©.000000E+00 35.334000E+00 4.6688000E +00
(2 S5.000000E+00 4.334000E+00 3.688000E +00
EIS (3 4.000000E+00 3.33400CE+00 2.888000E +00
Es (4) 3.000000E+00 2.334000E+00 1.688000E+00
EIS (5) 2.000000E+00 1.334000E+00 1.000000E +00
{(1) 2000000E- 01 1.750000E- Ot 1.084000E - 01
{ @ 2.000000E- 01 1.700000E- 01 1.034000E - 01
{ 3) 2.000000E- 01 1.82500CE- 01 1.625000E - 01
(4 2.000000E- 01 2258000E- 01 2.925000E - 01
(5 2.000000E- 01 2.686000E- 01 3.332000E- 01

8.278165E- 01 1.197816E+00 1.729176E+ 00
INEQUALITY CONSTRAINTS

WEIGHT 3.00000CE+00 3.903100E+00 4.880078E +00
EQUALITY CONSTRAINTS

ALTOTL 0.000000E+00 0.000000E+00 0.000000E + 00

LOOP NUMBER [INITIAL] a 4
UNKNOWNS
S
Bs
s
Es

1.000000E - 01 1.000000E - 01
2.000000E - 01 1.000000E - 01 1.000000E - 01
2.000000E - 01 1.000000E - 01 1.000000E - 01
2.00000CE - 01 2.002000E - 01 2.338000E - 01
2,000000E - 01 3.988000E - 01 4.684000E - 01

S2UN2S 2N
2

8.278163E - 0t 2.239101E+00 2.436545E+00

2.482448E - 2
4.804389E -
7383753E - 02
8.787026E - 02
123121E- 01
1.485227E - 01
1.703468E - 01
1.835454E - 01
2.158385E - 01
2373134E- 1
2.574349€ - 01
2781171E- 01

.431316E - 01

Figure 19. Wing Optimization Final Output

operations appearing in the SETUP procedure, and
the TABULATE statement.

The final output of this problem is shown in Figure 19,
containing a THOR iteration summary report followed
by the output from the TABULATE statement
describing the solution of the ODEs.

Programming Reduced to Modeling

Synthetic calculus renders algorithmic high-level lan-
guages into non-algorithmic very-high-level languages
by formulating problems according to intrinsic mathe-
matical decompositions:

©® Model/algorithm - The migration of partial dif-
ferentiation from model definition to automatic
arithmetic permits the separation of models from
algorithms, enabling algorithms to become part of
the environment rather than the program;

® Explicit/implicit - Problems are decomposed ac-
cording to whether the unknowns are dependent
variables (explicit) or independent variables (im-
plicit) and implicit solution operators are
provided that enable the separated implicit sub-
problems to be stated explicitly;

® Prediction/Control - The separation and nesting of
prediction processes within control processes is a
necessary method of avoiding paradoxical prob-
lem statements in mathematical modeling, and
decomposes the problem description into a nested
hierarchy of separate mathematical problems,
each functioning as a complementary part of a
dual prediction-control process.

Each level of the control/prediction hierarchyis a com-
plete system-level problem (e.g. simultaneous equa-
tions). The exchange of functional dependence for
prediction occurs visibly through the exchange of vari-
ables between the levels. The exchange of differential
dependence for control occurs invisibly through under-
lying hidden differential propagation mechanisms.

- The meaning of non-algorithmic programming is that

-9-

models used to describe the problem unit functions are
expressed as ’open-loop’ predictive procedures con-
taining only explicit non-iterative formulas. This ob-
viates the convoluted blending of numerical solution
methods with the problem formulation, thereby
preserving the engineering coherence of the model.
Except in rare cases there is no need for mathematical
reduction from the original engineering synthesis of a
problem, and the problem can be evolved through run
experience. Except for the generic solver operation
statements, which inteface the hidden algorithms, the
model becomes the entire program.

CONCLUSION

First Principles to Solutions - In summary, our goal has
been to achieve a level of program synthesis that
enables modelers to go from first principles to solutions
in a single description. This means elimination of low

" level algorithmic description, and directly addressing .

inverse problems, since that is the form in which the
scientific method presents problems to us.

The new paradigm has the elegance of a minimum set
of primitives which can be combined via nesting to
provide multiplicative leverage in solving complex
problems, especially when implicitly formulated.

Synthetic calculus provides a hidden calculus basis for
standard programming languages, purifying them of
the algorithmics that has obscured their use as model-
ing languages. This enables the declarative expression
of problems that has been the goal of Al languages like
PROLOG,.but in a common mathematical genre
familiar and comfortable to scientific and engincering
work.

The CASE for Optimization - Automatic differentiation
provides the enabling technology for the use of op-
timization in the dualrole as: (1) the primary solution
means for inverse problems and (2) a realizable goal of
enginecring design. Synthetic calculus is the CASE
paradigm that automatically re-models existing
software for optimization (basic synthesis) and enables
its reuse in new-purpose applications (advanced syn-
thesis). This is achieved in a low technology process
employing source code largely as is with little or no
mathematical analysis, algorithm design, or debugging.

In the realm of new applications, synthetic calculus
provides the leverage of 90 percent prebuilt software
plus the solution power of higher mathematics. Its
focus is one of rapid prototyping to provide engineer-
ing results as immediately for new technology applica-
tions as for staple applications having the benefit of
existing software tools, such as historical CAD applica-
tions.

The product described above is a combination of
standard FORTRAN 77 and our product software,
PowerCalculus™ . This product consists of a precom-
piler and a large runtime library. It can be readily
installed in any 32-bit or 64-bit FORTRAN environ-
ment. Qur current versions are available on Cray, DEC
VAX computers, and will soon be available on IBM
mainframes. We can provide custom Client-Server
installations, and are planning to offer ADA versions
in 1992.

-10-

BIBLIOGRAPHY

1. Adamson, D.S. and Winant, C.W.: "A SLANG Simulation of an
Initially Strong Shock Wave Downstream of an Infinite Area
Change", Proc. Conf. on Applic. of Continuous-System Simulation
Languages (June 1969) pp. 231-240.

2. Baur, W. and Strassen, V.: "The Cor;glexity of Partial Deriva-
tives”, Theoretical Computer Science (1983), North Holland
Publishing Co.

3. Bellman, R.E., and Kalaba, R.E. Quasilinearization and Non-
linear Boun Value Problems, American Elseveir Publishing Co.
New York, 1

4. Griewank, A.: "On Automatic Differentiation”, Preprint MCS-
P10-1088, Argonne National Laboratory, October 1988,

5. Iri, M.; "Simultaneous Computation of Functions, Partial Deriva-
tives and Estimates of Rounding Errors - Complexity and Prac-
ticality", Japan Journal of Applied Mathematics 1 (1984), 223-252

6. Iri, M. and Kubota, K.: "Methods of Fast Automatic Differentia-
tion and ?}Jpliwtions", RMI 87-02, EG?L of Mathematical En-
gineering, University of Tokyo, Nov. 1

7. Jerrell, M.: "Automatic Differentiation Using Almost Any Lan-
guage”, SIGNUM Newsletter, January 1989.

8. Kagiwada, H, Kalaba, R, Rosakhoo, N., and Springarn, K.:
¥umenml Derivatives and Noalinear Analysis, Plenum Press, New
ork, 1986

9. Kedem, G.: "Automatic Differentiation of Computer Programs”,
ACM TOMS, June 1980 P

10. Krinsll:’y, B. and Thames, JM.: "The Structure of Synthetic
Calculus”, Proceedings of the Int'l Workshop on High-Level Com-
puter Architecture, Los Angeles, 1984.

11. Neidinger, R.D.: * Automatic Differentiation and APL", College
Mathematics Journal, Vol. 20, No. 3, May 1989.

12. Pfeiffer, F.: "Automatic Differentiation in PROSE", SIGNUM
Newsletter Nov. 22, 1987

13. Rall, L.B.: "The Arithmetic of Differentiation”, Mathematics
Magazine, Vol. 59, No. 5, December 1986

14. Rall, L.B.: "Differentiation in PASCAL-SC": Type Gradient,
ACM TOMS, June 1984

15. Rall, L B.: *Differentiation and the Generation of Taylor Coef-

ficients in PASCAL-SC". In a New Approach to Scientific Com-

Klutation, U.W. Kulisch and W.L. Miranker, Eds., Academic Press,
ew York, 1983

16. Rall, L.B.: Automatic Differentiation: Techniques and Applim-
tions. Lecture Notes in Computer Science, Vol. 120,k, Springer-
Verlag, New York, 1981

17. Thames, J.M.: "FORTRAN CALCULUS: A New Implementa-
tion of Synthetic Calculus®, Digital Calculus Corporation, Decem-
ber, 1989.

18. Thames, JM.: "The Evolution of Synthetic Calculus: A Math-
ematical Technology for Advanced Architecture®, Proceedings of
the Int'l Workshop on High-Level Language computer Architecture
Fort Lauderdale, Florida, 1982

20. Thames, J.M.: "Computing in Calculus”, Research/Develop-
ment 26,5 (May 1975)

21. Thames, J.M.: "SLANG, A Problem-Solving Language for Con-
tinuous-Model Simulation and Optimization®, Proceedings, ACM
24th National Conf. (Dec. 1969)

22. PROSE - A General Pur]iaose Higher Level Language, Calculus
Applications Guide, Control Data Corp. Cybernet Services, Pub.
No. 84000170 Rev. A (Jan. 1977)

23. PROSE - A General Pu Higher Level Language, Calculus
Reference Manual, Control Data Corp. Cybernet Services, Pub. No.
84003200 Rev. B (Jan 1977)

